The Problem

Figure 1: Balls and Sticks.
If we are given a set of N balls connected by M sticks, is the resulting object rigid (in however many dimensions)?

The Setup

Let $\left\{r_{i}\right\}_{i=1}^{N}$ represent the three-dimensional positions of the balls (all of this can be generalized to higher dimension, I take three). The connectivity is determined from a picture (or for ambitious interrogators, a three-dimensional model) - we can specify the sticks in terms of the balls they connect, and then linearly order in any manner we like.

To each stick, we assign a constraint: the stick connecting r_{i} to r_{j} can be described by its length

$$
\begin{equation*}
\phi_{i}=\left\|r_{j}-r_{k}\right\|^{2}=\left(x_{j}-x_{k}\right)^{2}+\left(y_{j}-y_{k}\right)^{2}+\left(z_{j}-z_{k}\right)^{2}=d_{j k}^{2} \tag{1}
\end{equation*}
$$

The point is, we will take a "test move" and see which types of motions respect the constraint. For ϕ_{i} written above, if we move the $j^{\text {th }}$ ball from r_{j} to $r_{j}+\delta r_{j}$, and the $k^{t h}$ ball to $r_{k}+\delta r_{k}$, then:

$$
\begin{align*}
\delta \phi_{i} & =\left(r_{j}-r_{k}\right) \cdot\left(\delta r_{j}-\delta r_{k}\right)+O\left(\delta r^{2}\right) \tag{2}\\
& =\left(r_{j}-r_{k}\right) \cdot \delta r_{j}-\left(r_{j}-r_{k}\right) \cdot \delta r_{k}+O\left(\delta r^{2}\right)
\end{align*}
$$

which implies a matrix multiplication. Define $\delta X \in \mathbb{R}^{3 N}$ and the $i^{\text {th }}$ row of
the matrix J via

$$
\left.\begin{array}{rl}
\delta X & \doteq\left(\begin{array}{llllllll}
\delta x_{1} & \delta y_{1} & \delta z_{1} & \delta x_{2} & \ldots & \delta x_{N} & \delta y_{N} & \delta z_{N}
\end{array}\right)^{T} \\
J_{i} & \doteq\left(\begin{array}{llllllll}
\ldots & \ldots & x_{j}-x_{k} & y_{j}-y_{k} & z_{j}-z_{k} & \ldots & x_{k}-x_{j} & y_{k}-y_{j}
\end{array} z_{k}-z_{j}\right. \tag{3}
\end{array} \ldots\right) . . .
$$

with all $\ldots=0$ in the definition of J, and the first non-zero entries occurring at the $3(j-1)+1$ position, the second at $3(k-1)+1$ as indicated by the second line of (2). The matrix $J \in \mathbb{R}^{M \times(3 N)}$ has one row for each of the "sticks".

If we are to have $\delta \phi_{i}=0$ for all M constraints, then the matrix equation

$$
\begin{equation*}
\delta \phi=J \cdot \delta X=0 \tag{4}
\end{equation*}
$$

defines the condition that none of the constraint lengths change under the "motion" defined by δX (to first order). This tells us that $\delta X \in \operatorname{Null}(J)$.

The Solution

Rigid body motion really means that the only degrees of freedom are global translations and rotations. To answer the original question posed here, we need to know the dimension of the null space of J. The object is rigid iff $\operatorname{Dim}(\operatorname{Null}(J))=6$. For anything, any combination of balls and sticks, there are automatically six degrees of freedom that leave internal lengths invariant: three translations and three rotations. That the null space must have dimension six in both directions (I mean "if and only if" here) for the object to be rigid is then clear - rigid bodies have six degrees of freedom corresponding to rotations and translations, and non-rigid bodies have these six and more.

The full SVD gives more information than $\operatorname{Null}(J)$, but in theory, for $J=$ $U \Sigma V^{T}$ (or whichever decorations of ${ }^{T}$ you like), all one needs to do is count the zeros in the diagonal Σ to determine rigidity.

For a rigid body, one can also get the basis vectors for the six-dimensional null space from V^{T}. Here we are using more of the SVD information, and we can show that this six-dimensional space is in fact spanned by rotations and translations. Take the matrix:

$$
Q \equiv\left(\begin{array}{cccccc}
T_{x} & T_{y} & T_{z} & R_{x} & R_{y} & R_{z} \tag{5}
\end{array}\right)
$$

with $T_{x} \in \mathbb{R}^{3 N}$ a column vector representing x-translation

$$
T_{x} \doteq\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & \ldots \tag{6}
\end{array}\right)^{T}
$$

and similarly for T_{y} and T_{z} (for the rotations, it suffices to consider infinitesimal rotation generators). Then if $V_{T R}$ is a matrix with six columns for the null space, you can calculate: $Q Q^{T} V_{T R}-V_{T R}=0$ to establish containment (and v.v. to get the other direction).

Example

Figure 2: An example structure.
To be explicit about construction of J, we have for the example figure shown above:
$J \doteq\left(\begin{array}{ccccccccc}x_{1}-x_{2} & y_{1}-y_{2} & z_{1}-z_{2} & 0 & 0 & 0 & x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ 0 & 0 & 0 & x_{2}-x_{3} & y_{2}-y_{3} & z_{2}-z_{3} & x_{3}-x_{2} & y_{3}-y_{2} & z_{3}-z_{2}\end{array}\right)$
and if I take $r_{1}=(1,0,0), r_{2}=(0,1,0), r_{3}=(0,0,1)$, then

$$
J \doteq\left(\begin{array}{ccccccccc}
1 & -1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \tag{8}\\
0 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1
\end{array}\right)
$$

Mathematica presents me with two non-zero singular values for this matrix, the dimension of the (right-hand) space is 9 , so I infer that the dimension of the null space is 7 , this is not a rigid structure. Mathematica also has a function "NullSpace", of course, which must use the SVD internally.

