
The Problem
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Figure 1: Balls and Sticks.

If we are given a set of N balls connected by M sticks, is the resulting object
rigid (in however many dimensions)?

The Setup

Let {ri}N
i=1 represent the three-dimensional positions of the balls (all of this

can be generalized to higher dimension, I take three). The connectivity is de-
termined from a picture (or for ambitious interrogators, a three-dimensional
model) – we can specify the sticks in terms of the balls they connect, and
then linearly order in any manner we like.

To each stick, we assign a constraint: the stick connecting ri to rj can be
described by its length

φi = ‖rj − rk‖2 = (xj − xk)2 + (yj − yk)2 + (zj − zk)2 = d2
jk (1)

The point is, we will take a “test move” and see which types of motions
respect the constraint. For φi written above, if we move the jth ball from rj

to rj + δrj , and the kth ball to rk + δrk, then:

δφi = (rj − rk) · (δrj − δrk) + O(δr2)

= (rj − rk) · δrj − (rj − rk) · δrk + O(δr2)
(2)

which implies a matrix multiplication. Define δX ∈ IR3N and the ith row of

1



the matrix J via

δX≡̇
(

δx1 δy1 δz1 δx2 . . . δxN δyN δzN

)T

Ji=̇
(

. . . . . . xj − xk yj − yk zj − zk . . . xk − xj yk − yj zk − zj . . .
)

(3)
with all . . . = 0 in the definition of J , and the first non-zero entries occurring
at the 3(j − 1) + 1 position, the second at 3(k − 1) + 1 as indicated by the
second line of (2). The matrix J ∈ IRM×(3N) has one row for each of the
“sticks”.

If we are to have δφi = 0 for all M constraints, then the matrix equation

δφ = J · δX = 0 (4)

defines the condition that none of the constraint lengths change under the
“motion” defined by δX (to first order). This tells us that δX ∈ Null(J).

The Solution

Rigid body motion really means that the only degrees of freedom are global
translations and rotations. To answer the original question posed here, we
need to know the dimension of the null space of J . The object is rigid
iff Dim (Null(J)) = 6. For anything, any combination of balls and sticks,
there are automatically six degrees of freedom that leave internal lengths
invariant: three translations and three rotations. That the null space must
have dimension six in both directions (I mean “if and only if” here) for the
object to be rigid is then clear – rigid bodies have six degrees of freedom
corresponding to rotations and translations, and non-rigid bodies have these
six and more.

The full SVD gives more information than Null(J), but in theory, for J =
UΣV T (or whichever decorations of T you like), all one needs to do is count
the zeros in the diagonal Σ to determine rigidity.

For a rigid body, one can also get the basis vectors for the six-dimensional
null space from V T . Here we are using more of the SVD information, and
we can show that this six-dimensional space is in fact spanned by rotations
and translations. Take the matrix:

Q≡̇
(

Tx Ty Tz Rx Ry Rz

)
(5)
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with Tx ∈ IR3N a column vector representing x-translation

Tx=̇( 1 0 0 1 0 0 . . . )T (6)

and similarly for Ty and Tz (for the rotations, it suffices to consider infinites-
imal rotation generators). Then if VTR is a matrix with six columns for the
null space, you can calculate: QQT VTR − VTR = 0 to establish containment
(and v.v. to get the other direction).

Example
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Figure 2: An example structure.

To be explicit about construction of J , we have for the example figure shown
above:

J=̇
(

x1 − x2 y1 − y2 z1 − z2 0 0 0 x2 − x1 y2 − y1 z2 − z1

0 0 0 x2 − x3 y2 − y3 z2 − z3 x3 − x2 y3 − y2 z3 − z2

)
(7)

and if I take r1 = (1, 0, 0), r2 = (0, 1, 0), r3 = (0, 0, 1), then

J=̇
(

1 −1 0 0 0 0 −1 1 0
0 0 0 0 1 −1 0 −1 1

)
(8)

Mathematica presents me with two non-zero singular values for this matrix,
the dimension of the (right-hand) space is 9, so I infer that the dimension
of the null space is 7, this is not a rigid structure. Mathematica also has a
function “NullSpace”, of course, which must use the SVD internally.
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